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In this study the spectral problem of the two-dimensional Schr¨odinger equation with the
cylindrically symmetrical decatic potential is carried out. The concept of quantum mon-
odromy is introduced to give insight into the energy levels of system with this potential.
It is shown that quantum monodromy occurs atρ = 0 in the distribution of eigenstates
around a critical point on the spectrum atE = 0 with zero angular momentum, such
that there can be no smoothly valid assignment of quantum number. Cases with the
three-well and four-well potentials are presented to give rise to the double degeneracies
with respect to energy except for the angular momentumm= 0.

1. INTRODUCTION

One of the important tasks of quantum mechanics is to solve the Schr¨odinger
equation with the physical potentials. The anharmonic potentials have played an
important role in the evolution of many branches of physics. Generally, it has been
realized that many interesting and important features of numerous systems come
from the anharmonic character of their vibrations. During the past several decades,
many efforts have been produced to study the stationary Schr¨odinger equation with
the anharmonic potentials (Bose, 1994; Bose and Varma, 1990; Calogero, 1967;
Coleman, 1988; Dong, 2000, 2001a,b; Donget al., 1999; Dong and Ma, 1998;
Emin, 1982; Emin and Holstein, 1976; Esposito, 1998a,b, 2000; Hashimoto, 1979,
1980; Kaushal, 1989, 1991; Kaushal and Parashar, 1992; Newton, 1967;Özcelik
and Simsek, 1991; Reid, 1970; Share and Behra, 1980; Simsek andÖzcelik,
1994; Znojil, 1982a,b, 1989, 1990). For example, the anharmonic oscillator with
quartic anharmonicity in the potential has been widely discussed at both the classi-
cal and quantum mechanical limits of the theory under the case of one-dimensional
and two-dimensional spaces (Bender and Wu, 1973; Hoieet al., 1978; Jaenicke and
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Kleinert, 1993; Karrlein and Kleinert, 1988; Langer, 1967; Simon, 1970). Case
with the sextic potential has been also studied extensively (Child, 1998; Dutta
and Willey, 1988; Klauder, 1965; Panet al., 1999; Singhet al., 1990; Tater, 1987;
Turbiner, 1988a,b; Znojil, 1982a,b). Up to recently, it has been seen that a very
interesting physical phenomenon known as the quantum monodromy (Bates, 1991;
Child, 1998; Childet al., 1999, 2000; Cushman, 1983; Cushman and Sadovskii,
1999; Hazewinkei, 1994; Marsden and Hoffman, 1987; Ngoc, 1999; Sadovskii and
Zhilinski, 1999; Solariet al., 1996) occurs in the eigenvalue distribution around
a critical point in the joint spectrum at (E, m) = (0, 0) under the case of cham-
pagne bottle potential. It is surprising that the idea of the quantum monodromy
had been dormant for many years before the new interest led to the experiment
discovery in the spectrum of excited water molecules (Childet al., 1999). The
purpose of this work is to address the special feature with quantum monodromy
of the decatic potential, which has never been addressed in the literature, to our
knowledge.

The term monodromy (meaning “once round”) used in this note stems from
the mathematical literature (Hazewinkei, 1994; Marsden and Hoffman, 1987). One
kind of physical application occurs in any time-periodic system, where for example
the stabilities of fixed points in the period map are characterized by the eigenvalues
of the monodromy matrix (Solariet al., 1996). Another kind of application comes
from the classical and mechanical literature (Marsden and Hoffman, 1987; Solari
et al., 1996), where it is applied to demonstrate a gross topological obstruction to the
global construction of angle-action variables. From the viewpoint of the quantum
mechanics, this implies the absence of any smooth valid set of quantum numbers
for the entire spectrum. Quantum correspondences have been demonstrated for a
champagne bottle model (Child, 1998; Childet al., 2000) and for the molecular
spectrum of H2O (Child et al., 1999). The same characteristic energy pattern are
demonstrated below for the decatic potential. Moreover, it is found that the double
degeneracies with respect to the energy occurs in the case of the three-well and
four-well potentials. Special cases with the four-well potential are also shown to
arise quantum monodromy.

This paper is organized as follows. The eigenvalues of the Schr¨odinger equa-
tion with the decatic potential obtained by a full variational method is given in
section 2. Section 3 is devoted to a demonstration and discussion of the quantum
monodromy. A concluding remark is given in the final section 4.

2. THE QUANTUM-MECHANICAL SPECTRUM

As we know, the variational method used in this note has been widely ap-
plied to the different fields of physics and chemistry. Natural unitsh = c = 1
are used throughout this paper, if not explicitly stated otherwise. Considering the
two-dimensional Schr¨odinger equation with a potentialV(ρ) that depends only
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on the distanceρ from the origin, the quantum-mechanical Hamiltonian can be
written as [

−1

2

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ

)
+ m2

ρ2
− V(ρ)

]
ψ(ρ) = Eψ(ρ) (1)

whereV(ρ) is the decatic potential

V(ρ) = aρ2+ bρ4+ cρ6+ dρ8+ fρ10.

The numerically accurate eigenvalues are easily obtained by an expansion in nor-
malized degenerated harmonic oscillator states

ψ(ρ) =
∑

n

cn Rn,m(ρ) (2)

where
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in which Lαν (z) is the associated Laguerre polynomial (Abramowitz and Stegun,
1994). The necessary matrix elements follow from the recurrence relations
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from which, we can easily obtain the terms inρ4, ρ6, andρ8 as
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and

ρ6Rn,m = −1
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and terms inρ10 can be also obtained and need not be expressed explicitly for
simplicity.

The numerical convergence with respect to truncation of the resulting tridi-
agonal matrix depends on the parameters of the decatic potential. In the following
section, we will discuss the results obtained by this method.

Besides, as discussed in Childet al.(2000), there exists the hidden symmetry
for the sextic physical potentialV(r ) = ar2+ br4+ cr6. The system studied in
this note will also imply hidden symmetry since the structure of decatic physical
potential is similar to that of sextic physical potential. For example, it is noted
that the substitutionρ → iρ reverse the sign ofb andd andE in (1), leaving the
remaining parameters invariant.

3. QUANTUM MONODROMY

This work on quantum monodromy is largely addressed in semiclassical terms
(Bates, 1991; Child, 1998; Childet al., 1999, 2000; Cushman, 1983; Cushman and
Sadovskii, 1999; Hazewinkei, 1994; Marsden and Hoffman, 1987; Ngoc, 1999;
Sadovskii and Zhilinski, 1999; Solariet al., 1996). In Fig. 1, the points mark the
numerically determined eigenvalues aroundE = 0 for angular momentum−30<
m < 30. To bring out the underlying patterns, the full and broken lines are used to
join points with a common radial quantum numberν and a common total quantum
numbern = 2ν + |m|, respectively. It is found thatν quantized curves shows a
sharp transition from smooth variation throughm= 0 whenE < 0, to a discontin-
uous first derivative whenE > 0. However, the opposite is true for the brokenn
quantized curves. Nonanalyticity in the relevant action integral is responsible for
the dislocation in each case. The dislocations also have consequences for the par-
allel transport around the origin of any vector on the lattice of quantum numbers.
As show elsewhere (Bates, 1991; Childet al., 1999) any vector (1m,1n) returns
to (1m′,1n′) such that (

1m′

1n′

)
=
(

1 0
1 1

)(
1m
1n

)
because the parallel transport entails a switch from one sheet of the classical action
integral to the next (Childet al., 1999).

The corresponding champagne bottle potential is illustrated in Fig. 2.
In this case, the parameters of the given potential are taken asa = −10,b =

0.1, c = 0.01,d = 0.001, andf = 0.00001, respectively. In fact, there will exist
such a phenomenon as quantum monodromy only if the potential is taken as the
champagne bottle potential.

Furthermore, the three-well and four-well potential can be also obtained by
taking the suitable parameters and illustrated in Figs. 3 and 4, respectively.
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Fig. 1. The full and broken lines join points with the radial quantum numberν and the “total”
quantum numbern = 2ν +m values, respectively. The parameters of the potential are taken as
a = −10,b = 0.1, c = 0.01,d = 0.001, andf = 0.00001, respectively.

Fig. 2. The parameters of the potential are taken asa = −10,b =
0.1, c = 0.01,d = 0.001, and f = 0.00001. The abscissa denotes the
radialρ and the ordinate denotes the value of the potential.
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Fig. 3. The parameters of the potential are taken asa = 5, b =
−0.1, c = 0.002,d = −0.0005, and f = 0.00001. The abscissa de-
notes the radialρ and the ordinate denotes the value of the potential.

For the triple well potential, the corresponding parameters are taken asa =
5, b = −0.1, c = 0.002,d = −0.0005, andf = 0.00001, respectively, it is shown
from Fig. 5 that the double degeneracies with respect to energy occurs except for
m= 0.

For the four-well potential, the corresponding parameters are taken asa =
−22,b= 1.25,c= 0.008,d = −0.001, andf = 0.00001, respectively. It is also
shown that double degeneracies occur. Moreover, it is found that quantum mon-
odromy also occurs under the case of the four-well potential. This can be ex-
plained by Fig. 6, from which it is shown to exist a champagne bottle potential so
that this kind of phenomenon is not surprising. It is also found from Fig. 5 that
the total quantum numbern changes discontinuously, so does the radial quantum
numberν. Certainly, the parameters are taken arbitrarily. The purpose of taking
such parameters into consideration is to make the problem clear and simple. The
special cases ford = f = 0 andc = d = f = 0 have been carried out in Child

Fig. 4. The parameters of the potential are taken asa = −22,b =
1.25,c = 0.008,d = −0.001, andf = 0.00001. The abscissa denotes
the radialρ and the ordinate denotes the value of the potential.
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Fig. 5. The full and broken lines join points with the radial quantum numberν and the “total”
quantum numbern = 2ν +m values, respectively. The parameters of the potential are taken as
a = −22,b = 1.25,c = 0.008,d = −0.001, andf = 0.00001, respectively.

(1998) and Childet al.(2000), respectively. However, the study of the single well
potential is beyond our interest.

Actually, the case of champagne bottle potential illustrated in Fig. 2 looks like
that studied in Child (1998) and Childet al. (2000) except for the different power
of the variableρ. In fact, it is not surprised at the case with negativea and positive
b, c, d, f with the property of the champagne bottle because the contribution from
these terms plays the same role as that with negativea and positiveb studied in
Child (1998) and that with negativea, b and positivec discussed in Childet al.
(2000).

4. CONCLUDING REMARKS

In this paper, the quantum-mechanic spectrum of the two-dimensional
Schrödinger equation with the decatic potentialV(ρ) = aρ2+ bρ4+ cρ6+ dρ8+
fρ10 is obtained by variational method. On taking the suitable parameters of
the given potential, it is shown that quantum monodromy occurs atr = 0 in the
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Fig. 6. The full and broken lines join points with the radial quantum numberν and the “total”
quantum numbern = 2ν +m values, respectively. The parameters of the potential are taken as
a = −22,b = 1.25,c = 0.008,d = −0.001, andf = 0.00001, respectively.

distribution of eigenstates around a critical point on the spectrum atE = 0 with
zero angular momentum. Cases with the triple-well and four-well potentials are
shown to give rise to the double degeneracies with respect to energy except for
m= 0. Also, it is found that the radial quantum numberν and the total quantum
numbern change discontinuously, especially case with the four-well potential also
exists the quantum monodromy, which is determined by the nature of the cham-
pagne bottle potential illustrated by Fig. 6. As discussed above, we have however
stressed the generality of the abrupt change in level structure about the monodromy
point, for all systems with cylindrically symmetric potential barriers. It remains to
be seen whether this interesting phenomenon known as the quantum monodromy
occurs in other anharmonic physical potential.
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