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Quantum Monodromy in the Spectrum
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In this study the spectral problem of the two-dimensional 8dimger equation with the
cylindrically symmetrical decatic potential is carried out. The concept of quantum mon-
odromy is introduced to give insight into the energy levels of system with this potential.

It is shown that quantum monodromy occurgat 0 in the distribution of eigenstates
around a critical point on the spectrumBt= 0 with zero angular momentum, such

that there can be no smoothly valid assignment of quantum number. Cases with the
three-well and four-well potentials are presented to give rise to the double degeneracies
with respect to energy except for the angular momemnuea 0.

1. INTRODUCTION

One of the important tasks of quantum mechanics is to solve the&oger
equation with the physical potentials. The anharmonic potentials have played an
important role in the evolution of many branches of physics. Generally, it has been
realized that many interesting and important features of numerous systems come
from the anharmonic character of their vibrations. During the past several decades,
many efforts have been produced to study the stationary8uitgér equation with
the anharmonic potentials (Bose, 1994; Bose and Varma, 1990; Calogero, 1967,
Coleman, 1988; Dong, 2000, 2001a,b; Dasteal, 1999; Dong and Ma, 1998;
Emin, 1982; Emin and Holstein, 1976; Esposito, 1998a,b, 2000; Hashimoto, 1979,
1980; Kaushal, 1989, 1991; Kaushal and Parashar, 1992; Newton, Q96&lik
and Simsek, 1991; Reid, 1970; Share and Behra, 1980; SimselOacelik,

1994; Znojil, 1982a,b, 1989, 1990). For example, the anharmonic oscillator with
guartic anharmonicity in the potential has been widely discussed at both the classi-
cal and quantum mechanical limits of the theory under the case of one-dimensional
and two-dimensional spaces (Bender and Wu, 1973; etaik 1978; Jaenicke and
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Kleinert, 1993; Karrlein and Kleinert, 1988; Langer, 1967; Simon, 1970). Case
with the sextic potential has been also studied extensively (Child, 1998; Dutta
and Willey, 1988; Klauder, 1965; P&t al., 1999; Singtet al, 1990; Tater, 1987;
Turbiner, 1988a,b; Znojil, 1982a,b). Up to recently, it has been seen that a very
interesting physical phenomenon known as the quantum monodromy (Bates, 1991;
Child, 1998; Childet al., 1999, 2000; Cushman, 1983; Cushman and Sadovskii,
1999; Hazewinkei, 1994; Marsden and Hoffman, 1987; Ngoc, 1999; Sadovskii and
Zhilinski, 1999; Solariet al., 1996) occurs in the eigenvalue distribution around

a critical point in the joint spectrum aE( m) = (0, 0) under the case of cham-
pagne bottle potential. It is surprising that the idea of the quantum monodromy
had been dormant for many years before the new interest led to the experiment
discovery in the spectrum of excited water molecules (Cétldl, 1999). The
purpose of this work is to address the special feature with quantum monodromy
of the decatic potential, which has never been addressed in the literature, to our
knowledge.

The term monodromy (meaning “once round”) used in this note stems from
the mathematical literature (Hazewinkei, 1994; Marsden and Hoffman, 1987). One
kind of physical application occurs in any time-periodic system, where for example
the stabilities of fixed points in the period map are characterized by the eigenvalues
of the monodromy matrix (Solaeit al., 1996). Another kind of application comes
from the classical and mechanical literature (Marsden and Hoffman, 1987; Solari
etal, 1996), whereitis applied to demonstrate a gross topological obstruction to the
global construction of angle-action variables. From the viewpoint of the quantum
mechanics, this implies the absence of any smooth valid set of quantum numbers
for the entire spectrum. Quantum correspondences have been demonstrated for a
champagne bottle model (Child, 1998; Chdtal, 2000) and for the molecular
spectrum of HO (Child et al, 1999). The same characteristic energy pattern are
demonstrated below for the decatic potential. Moreover, it is found that the double
degeneracies with respect to the energy occurs in the case of the three-well and
four-well potentials. Special cases with the four-well potential are also shown to
arise quantum monodromy.

This paper is organized as follows. The eigenvalues of thec8atgéer equa-
tion with the decatic potential obtained by a full variational method is given in
section 2. Section 3 is devoted to a demonstration and discussion of the quantum
monodromy. A concluding remark is given in the final section 4.

2. THE QUANTUM-MECHANICAL SPECTRUM

As we know, the variational method used in this note has been widely ap-
plied to the different fields of physics and chemistry. Natural uhits c = 1
are used throughout this paper, if not explicitly stated otherwise. Considering the
two-dimensional Scludinger equation with a potenti#i(p) that depends only
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on the distance from the origin, the quantum-mechanical Hamiltonian can be
written as

1/10 9 m?
—s\=7p= )+ — V()| ¥(p) = E¥(p) 1)
2\padp 9p P
whereV (p) is the decatic potential

V(p) = ap® + bp* + cp® + dp® + p'°.

The numerically accurate eigenvalues are easily obtained by an expansion in nor-
malized degenerated harmonic oscillator states

¥(p) =Y CaRum(p) 2
where
20 = m)/2! %
Ram(p) = [W} P L%(PZ) 3

in which L%(2) is the associated Laguerre polynomial (Abramowitz and Stegun,
1994). The necessary matrix elements follow from the recurrence relations

1/2 1/2
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1 1
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(6)
from which, we can easily obtain the termsgfy, p®, andp® as
1
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and
P°Rom = —%[«n + 2 — m)((n + 47 — m)((n + 6)° - )] *Roem
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and terms inp!® can be also obtained and need not be expressed explicitly for
simplicity.

The numerical convergence with respect to truncation of the resulting tridi-
agonal matrix depends on the parameters of the decatic potential. In the following
section, we will discuss the results obtained by this method.

Besides, as discussed in Chétlal.(2000), there exists the hidden symmetry
for the sextic physical potentidf (r) = ar? 4 br 4 cr®. The system studied in
this note will also imply hidden symmetry since the structure of decatic physical
potential is similar to that of sextic physical potential. For example, it is noted
that the substitutiom — ip reverse the sign df andd andE in (1), leaving the
remaining parameters invariant.

3. QUANTUM MONODROMY

This work on quantum monodromy is largely addressed in semiclassical terms
(Bates, 1991; Child, 1998; Chikt al., 1999, 2000; Cushman, 1983; Cushman and
Sadovskii, 1999; Hazewinkei, 1994; Marsden and Hoffman, 1987; Ngoc, 1999;
Sadovskii and Zhilinski, 1999; Solaet al, 1996). In Fig. 1, the points mark the
numerically determined eigenvalues arouthe: 0 for angular momentum 30<
m < 30. To bring out the underlying patterns, the full and broken lines are used to
join points with a common radial quantum numiend a common total quantum
numbern = 2v + |m|, respectively. It is found that quantized curves shows a
sharp transition from smooth variation through= 0 whenE < 0, to a discontin-
uous first derivative whelk > 0. However, the opposite is true for the broken
guantized curves. Nonanalyticity in the relevant action integral is responsible for
the dislocation in each case. The dislocations also have consequences for the par-
allel transport around the origin of any vector on the lattice of quantum numbers.
As show elsewhere (Bates, 1991; Cheldhl,, 1999) any vectorAm, An) returns

to (Am’, An’) such that
AmY\ (1 0)/Am
An ) \1 1 An

because the parallel transport entails a switch from one sheet of the classical action
integral to the next (Chilét al., 1999).

The corresponding champagne bottle potential is illustrated in Fig. 2.

In this case, the parameters of the given potential are taken-as 10,b =
0.1,c =0.01,d = 0.001, andf = 0.00001, respectively. In fact, there will exist
such a phenomenon as quantum monodromy only if the potential is taken as the
champagne bottle potential.

Furthermore, the three-well and four-well potential can be also obtained by
taking the suitable parameters and illustrated in Figs. 3 and 4, respectively.
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Champagne bottle potential
a=-10,b=0.1,c=0.01,d=0.001,£=0.00001

Energy

Angular momentum

Fig. 1. The full and broken lines join points with the radial quantum numband the “total”
quantum numben = 2v + m values, respectively. The parameters of the potential are taken as
a=-10,b=0.1,c=0.01,d = 0.001, andf = 0.00001, respectively.
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Fig. 2. The parameters of the potential are takenaas —10,b =
0.1,c=0.01,d = 0.001, andf = 0.00001. The abscissa denotes the
radial p and the ordinate denotes the value of the potential.
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Fig. 3. The parameters of the potential are takenaas 5,b =
—0.1,¢=0.002,d = —0.0005, andf = 0.00001. The abscissa de-
notes the radigb and the ordinate denotes the value of the potential.

For the triple well potential, the corresponding parameters are taker=as
5b=-0.1,¢c=0.002,d = —0.0005, andf = 0.00001, respectively, itis shown
from Fig. 5 that the double degeneracies with respect to energy occurs except for
m = 0.

For the four-well potential, the corresponding parameters are takan=as
—22,b=1.25,c=0.008,d = —0.001, andf = 0.00001, respectively. It is also
shown that double degeneracies occur. Moreover, it is found that quantum mon-
odromy also occurs under the case of the four-well potential. This can be ex-
plained by Fig. 6, from which it is shown to exist a champagne bottle potential so
that this kind of phenomenon is not surprising. It is also found from Fig. 5 that
the total quantum numberchanges discontinuously, so does the radial quantum
numberv. Certainly, the parameters are taken arbitrarily. The purpose of taking
such parameters into consideration is to make the problem clear and simple. The
special cases fal = f =0 andc =d = f = 0 have been carried out in Child

400F
300

200}

AN N

—-100

—-200

~7.5 -5 -2.5 [o] 2.5 5 7.5

Fig. 4. The parameters of the potential are takenaas —22,b =
1.25,¢ = 0.008,d = —0.001, andf = 0.00001. The abscissa denotes
the radialp and the ordinate denotes the value of the potential.
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Three well potential
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Fig. 5. The full and broken lines join points with the radial qguantum numbemd the “total”
guantum numben = 2v + m values, respectively. The parameters of the potential are taken as
a=-22,b = 1.25,c=0.008,d = —0.001, andf = 0.00001, respectively.

(1998) and Chilcet al. (2000), respectively. However, the study of the single well
potential is beyond our interest.

Actually, the case of champagne bottle potential illustrated in Fig. 2 looks like
that studied in Child (1998) and Chikt al. (2000) except for the different power
of the variablep. In fact, it is not surprised at the case with negaéiand positive
b, c, d, f with the property of the champagne bottle because the contribution from
these terms plays the same role as that with negataed positiveb studied in
Child (1998) and that with negative b and positivec discussed in Chilet al.
(2000).

4. CONCLUDING REMARKS

In this paper, the quantum-mechanic spectrum of the two-dimensional
Schiodinger equation with the decatic potentil) = ap? + bp* 4+ cp® + dp® +
fp0 is obtained by variational method. On taking the suitable parameters of
the given potential, it is shown that quantum monodromy occurs=a0 in the
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Four well potential

a=-22,b=1.25,c=0.008,d=-0.001,f=0.00001

Energy

Angular momentum

Fig. 6. The full and broken lines join points with the radial guantum numband the “total”
guantum numben = 2v + m values, respectively. The parameters of the potential are taken as
a=—-22,b=1.25,c=0.008,d = —0.001, andf = 0.00001, respectively.

distribution of eigenstates around a critical point on the spectruih-at0 with

zero angular momentum. Cases with the triple-well and four-well potentials are
shown to give rise to the double degeneracies with respect to energy except for
m = 0. Also, it is found that the radial quantum numbeaind the total quantum
numbem change discontinuously, especially case with the four-well potential also
exists the quantum monodromy, which is determined by the nature of the cham-
pagne bottle potential illustrated by Fig. 6. As discussed above, we have however
stressed the generality of the abrupt change in level structure about the monodromy
point, for all systems with cylindrically symmetric potential barriers. It remains to

be seen whether this interesting phenomenon known as the quantum monodromy
occurs in other anharmonic physical potential.
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